
Scaling up Stochastic Gradient Descent using Data Parallelism:
Application to Horse Racing Prediction using Machine Learning

Ramya Rao Basava
Department of Computer Science
University of British Columbia

Ganesh Jawahar
Department of Computer Science
University of British Columbia

1 Introduction

In this project, the winner of the Hong Kong Horse Racing is predicted using Machine Learning
(ML). In addition to the standard horse and race features, the most frequent words from the
match summary for each race are also used as input features. Least squares regression with L2
regularization is used. Given that this is a parallel computing project, apart from trying to get
a good accuracy for the ML problem, one of the main aims of the project was to reduce the
computation time by parallelizing the Stochastic Gradient Descent (SGD) step. For this, three
different approaches were compared as listed below:

• Synchronous SGD
• Elastic Averaging based Asynchronous SGD
• HOGWILD based Asynchronous SGD (based on distributed memory, not shared memory)
The overview of the communication structure for the different methods, data processing, the

hyperparameters used for different algorithms, MPI parallel environment calls and the results
obtained are detailed in the following sections.

2 Parallelization Algorithms - Communication Structure

2.1 Synchronous SGD (SYNSGD)

Create	large	mini-
batch

MASTER
Process

Break	mini-batch	
into	parts	for	

workers

WORKER	
Process	1

WORKER	
Process	2

WORKER	
Process	n……….

Wait	for	gradient	
updates	from	all	

workers

Perform	
parameter	

(weights)	update

Broadcast	updated	
weights	back	to	

workers

Receive	part	of	
mini-batch	from	

master

Compute	 local	
gradients

Send	these	local	
gradients	to	
master

Receive	part	of	
mini-batch	from	

master

Compute	 local	
gradients

Send	these	local	
gradients	to	
master

Receive	part	of	
mini-batch	from	

master

Compute	 local	
gradients

Send	these	local	
gradients	to	
master

……….

……….

……….

Receive	updated	
gradients	from	

master

Receive	updated	
gradients	from	

master

Receive	updated	
gradients	from	

master……….

Each iteration:

In synchronous SGD, for each iteration, the master splits the minibatch equally among workers,
waits for workers to return the gradients and then sums all the gradients before performing an
update over the master weights. The algorithm executes for several iterations until convergence.
Synchronous SGD entails communication bottleneck at end of each iteration when the master
waits for all the workers to complete their task. Thus, the algorithm is inefficient and is as fast
as the slowest worker.



2.2 Elastic Averaging based Asynchronous SGD (EASGD)

MASTER
Process

WORKER	
Process	1

WORKER	
Process	2

WORKER	
Process	n……….

Initialize		local	
weights

Update	weights	
based	on	the	
differences

Run	gradient	
descent		for	tau	

iterations

Run	gradient	
descent		for	tau	

iterations

Run	gradient	
descent		for	tau	

iterations

Broadcast	weights	
to	workers

Initialize		local	
weights	from	

master

Initialize		local	
weights	from	

master

Initialize		local	
weights	from	

master……….

Get	master	
weights,	update	
local	weights	and	
send	difference

Get	master	
weights,	update	
local	weights	and	
send	difference

Get	master	
weights,	update	
local	weights	and	
send	difference

Each iteration:

Elastic Averaging based Asynchronous SGD algorithm [1] lets each worker have a local model
and perform SGD on the full dataset. To mitigate the discrepancy between the master and the
worker weight, the algorithm defines a elastic force between worker and master weight. This
force is more for a worker if its weight is far from master weights and negligible for a worker if
its weight is close to master weight. In the latter case, the algorithm lets worker to explore the
neighborhood of master’s weight space.

2.3 HOGWILD based Asynchronous SGD (HWSGD)
MASTER
Process

WORKER	
Process	1

WORKER	
Process	2

WORKER	
Process	n……….

Initialize		local	
weights

Non-blocking	
receive	weights	
from	workers

Compute	 local	
gradients

Compute	 local	
gradients

Compute	 local	
gradients

Non-blocking	send	
weights	to	workers

Receive	master	
weights

Receive	master	
weights

Receive	master	
weights……….

Update	local	
weights	and	send	

it	to	master

Update	local	
weights	and	send	

it	to	master

Update	local	
weights	and	send	

it	to	master

Each iteration:

Wait	for	all	non	
blocking	

commands	to	
complete

In HOGWILD based Asynchronous SGD algorithm [2], the master uses non-blocking calls
to send weights to worker and receive weights from worker. Such a communication structure
lets a worker to overwrite each others progress. The major advantage of this algorithm is that it
keeps the workers always busy with work as the master updates its weight lazily with the weight
returned by the worker.

3 Horse Racing Prediction - Settings

Given a race with a set of horses, the task is to identify the horse from the set that is most likely
going to win the race. We use the dataset from Kaggle website. 1 The statistics of this dataset
is displayed below:

We utilize three categories of features 2 (1500/5000 features) for each example:

• Horse - Weight, Draw, Horse number, Jockey, Trainer, Actual Weight (includes weight of
jockey and gears) (6 features)

1https://www.kaggle.com/alberthkcheng/hong-kong-horse-racing-explained-with-data
2We standardize all the features by removing the mean and scaling to unit variance using Python based scikit-learn library.



Dataset No. of Examples No. of Races Average horse per race

Training 20514 1658 12.4
Validation 2927 236 12.4
Testing 5923 473 12.5

• Race - Distance, Race course, Race name, Track name, Track condition, Race class and
Race number (7 features)

• Match Summary - Words that are most frequent in the match summary (1487/4987 fea-
tures)

For performing the machine learning task, we use least squares based linear regression model
with L2 regularization. We use ‘Early stopping’ to terminate the training when the validation
performance is no longer improving after certain number of iterations. The hyperparameters
used are given in the table below:

Hyperparameter Description Value

Batch size Size of the minibatch of training examples for each worker 200
Maximum Iterations Maximum number of training iterations before calling off the

training
10000

Lambda Parameter that controls L2 regularization 0.5
Initial Learning Rate Learning rate for the weight update step in the stochastic gra-

dient descent algorithm
0.01

Patience Parameter for Early Stopping that defines the number of it-
erations (of poor validation performance) to tolerate before
calling off the training

100

Elasticity Parameter Parameter for EASGD algorithm that defines the strength of
the elastic force between master and worker weight

0.8

Communication Period Number of iterations a worker has to wait before synchro-
nization with master for EASGD algorithm

5

Waitall Period Number of iterations a master has to wait before calling
Waitall() to wait for all nonblocking requests to complete for
HWSGD algorithm

10

4 MPI Parallel Environment - Settings

We implement the parallelization algorithms in MPI using C. We use the following MPI com-
mands:

Command SYNSGD (Master) SYNSGD (Worker) EASGD (Master) EASGD (Worker) HWSGD (Master) HWSGD (Worker)

MPI Bcast 3 3 3 3 3 3
MPI Scatterv 3 3 7 7 7 7
MPI Reduce 3 3 3 3 7 7
MPI Isend 7 7 7 7 3 7
MPI Irecv 7 7 7 7 3 7

MPI Waitall 7 7 7 7 3 7
MPI Send 7 7 7 7 7 3
MPI Recv 7 7 7 7 7 3



5 Results

5.1 Comparison of all parallel algorithms

For the three parallel algorithms given in Section 2, the computation is run with different
number of processors n = 4, 8, 16 and 32. The training terminates once the validation
performance reaches an accuracy of 10%. The training time (in minutes) is recorded for each
case and is plotted below for different methods:

5 10 15 20 25 30
number of processors

0

20

40

60

80

100

120

140

160

tra
in

in
g 

tim
e 

in
 m

in
ut

es

1500 features, 10% validation performance

SYNSGD EASGD HWSGD

From the plot, we observe that asynchronous algorithms (EASGD, HWSGD) are faster than
synchronous algorithm (SYNSGD) by a large margin. This is mainly due to the communication
bottleneck prevalent in SYNSGD when the master waits for all the workers to return the gradi-
ents at each iteration. We also find that the training time of SYNSGD increases with number of
processors and requires more iterations to converge.

5.2 Validation and testing results

The following are the validation and testing results obtained, with the hyper-parameters given in
Section 3. The values in the table give the percentage of races predicted correctly in validation
and test phases, for the case when n = 16.

Algorithm SYNSGD EASGD HWSGD

% Correct in Validation phase 10.17 11.44 10.59
% Correct in Testing phase 14.16 9.51 9.09

5.3 Comparison of different communication periods for EASGD

For EASGD, we experiment with different communication periods for different number of
processors n = 4, 8, 16 and 32 and stop the training once the validation performance reaches
an accuracy of 10%. The training time (in minutes) is recorded for each case. The plot below
shows the effect on training time, as the communication period and n are varied:



5 10 15 20 25 30
number of processors

7.5

10.0

12.5

15.0

17.5

20.0

22.5

tra
in

in
g 

tim
e 

in
 m

in
ut

es

1500 features, 10% validation performance

commu. period = 2 commu. period = 10 commu. period = 20 commu. period = 50

From the plot we observe that, when the communication period is high (say 50), the training
time increases significantly. This result indicates the possibility that the worker weight becomes
stale, when the communication period is high and henceforth, the worker needs more iterations
to converge.

5.4 Comparison of different waitall periods for HWSGD

For HWSGD, we experiment with different waitall periods for different number of processors
n = 4, 8, 16 and 32 and stop the training once the validation performance reaches an accuracy
of 10%. The training time (in minutes) is recorded for each case. The plot below shows the
effect on training time, as the communication period and n are varied:

5 10 15 20 25 30
number of processors

10.0

12.5

15.0

17.5

20.0

22.5

25.0

tra
in

in
g 

tim
e 

in
 m

in
ut

es

1500 features, 10% validation performance

waitall period = 5 waitall period = 25 waitall period = 50 waitall period = 100

From the plot, we observe that the sweet spot of waitall period is 25. For low waitall peri-
ods, the training time increases with the increase in number of processors. This indicates that
staleness of worker weight increases with increase in number of processors, especially for low
waitall periods.

5.5 Increasing the number of features

We increase the number of features from 1500 to 5000. EASGD is robust as it outperforms
other algorithms by a large margin.



Algorithm SYNSGD EASGD HWSGD

Training time in hours when n = 16 11.43 1.42 6.1

6 Conclusion

As it can be seen from the results the test accuracy obtained for SYNSGD is about 14% and
that for EASGD and HWSGD is about 10%. This is low, which indicates that horse racing
prediction is not an easy problem to solve. More in-depth analysis needs to be done to see which
features are essentially the best ones to use for this problem. For the parallel computing part,
it can be seen that asynchronous methods perform better than the synchronous method, which
is expected. Also, EASGD outperforms the other two methods and takes the least amount of
compute time, although a small amount of accuracy is lost compared to SYNSGD. Hence, we
recommend Elastic Averaging based Asynchronous SGD (EASGD) as the training algorithm
for this ML problem.

References

[1] Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep Learning with Elastic Averaging
SGD. In Proceedings of the 28th International Conference on Neural Information Pro-
cessing Systems - Volume 1, NIPS’15, pages 685–693, Cambridge, MA, USA, 2015. MIT
Press.

[2] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. HOGWILD!: A Lock-
free Approach to Parallelizing Stochastic Gradient Descent. In Proceedings of the 24th
International Conference on Neural Information Processing Systems, NIPS’11, pages 693–
701, USA, 2011. Curran Associates Inc.


