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1 Introduction
The main aim of model order reduction is to find a lower dimension approximation of a full model solution
by projecting it onto a lower dimensional space. Proper Orthogonal Decomposition (POD), also known as
Principal Component Analysis (PCA), is one of the most popular methods used to construct this projection
operator. In this method the proper orthogonal modes of a system of equations are constructed and then
these modes are truncated as required to construct the lower dimensional approximation. Model reduction
for the strong form Reproducing Kernel Collocation Method (RKCM) [3] is proposed, where a Least Squares
Galerkin projection is used to project the over-determined system of equations. Examples are provided for
linear problems for the RKCM framework.

2 Reduced bases from Proper Orthogonal Decomposition (POD)
In this section the detailed derivation for obtaining the reduced order POD bases is given [2, 4]. Consider
a function u(x, t) defined on the domain x ∈ Rn, for which a approximate reduced order function is to
be obtained by projection on to a reduced bases (here POD bases). The POD bases are obtained under the
following statement of optimality:

Find a bases φ such that; the averaged squared error between u(x, t) and its orthogonal projection on to φ is
minimized, [2]. This is given by the following expression:

min
φ∈L2

〈∥∥∥∥u− (u, φ)

‖φ‖2
φ

∥∥∥∥2
〉

(1)

where (•, •) is the inner product defined by (f, g)Ω =
∫

Ω
f(x)g∗(x)dx. Here ‘∗’ denotes the complex

conjugate. ‖ • ‖ = (•, •) 1
2 is the induced norm and 〈•〉 is the averaging operator. This is equivalent to

maximizing the averaged inner product between u and φ suitably normalized [2, 4]:

max
φ∈L2

〈
|(u, φ)|2

〉
‖φ‖2

(2)

subject to the condition ‖φ‖2 = 1. Here | • | denotes the absolute value. The proof for equivalence of
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equation (1) and (2) is given as follows:〈∥∥∥∥u− (u, φ)

‖φ‖2
φ

∥∥∥∥2
〉

=

〈(
u− (u, φ)

‖φ‖2
φ, u− (u, φ)

‖φ‖2
φ

)〉
=

〈
(u, u)− 2

(u, φ)

‖φ‖2
(u, φ) +

(u, φ)

‖φ‖2
(u, φ)

‖φ‖2
‖φ‖2

〉
=

〈
‖u‖2 − |(u, φ)|2

‖φ‖2

〉
=
〈
‖u‖2

〉
−
〈
|(u, φ)|2

‖φ‖2

〉
(3)

From the above proof, it can be seen that:

min
φ∈L2

〈∥∥∥∥u− (u, φ)

‖φ‖2
φ

∥∥∥∥2
〉
⇒ max

φ∈L2

〈
|(u, φ)|2

〉
‖φ‖2

; ‖φ‖2 = 1 (4)

For example, consider the case when u represents velocity. Equation (2) means that if u is projected along φ,
the average energy content (kinetic energy) is greater than if u is projected along any other bases function.
The maximization problem in equation (2) can be recast into a constrained minimization problem with the
functional defined by:

J [φ] =
〈
|(u, φ)|2

〉
− λ

(
‖φ‖2 − 1

)
(5)

where λ is the Lagrange multiplier. Using calculus of variations, the necessary condition for extrema is
reached when the functional derivative vanishes for all variations of φ+εη ∈ L2. Here η 6= 0 is an auxillary
function and ε ∈ R is a small parameter.

d

dε
J [φ+ εη]

∣∣∣∣
ε=0

= 0 (6)

Using the inner product property; (f, g) = (g, f)∗, the above equation can be written as:

d

dε
[〈(u, φ+ εη)(φ+ εη, u)〉 − λ(φ+ εη, φ+ εη)]

∣∣∣∣
ε=0

= 0

⇒2 [〈(u, η)(φ, u)〉 − λ(φ, η)] = 0

⇒
〈∫

Ω

u(x)η∗(x)dx

∫
Ω

φ(x′)u∗(x′)dx′
〉
− λ

∫
Ω

φ(x)η∗(x)dx = 0 (7)

Interchanging the order of the averaging operator and inner product (averaging operator commutes with the
integral): ∫

Ω

[∫
Ω

〈u(x)u∗(x′)〉φ(x′)dx′ − λφ(x)

]
η∗(x)dx = 0 (8)

This results in the following Euler–Lagrange equation:∫
Ω

〈u(x)u∗(x′)〉φ(x′)dx′ = λφ(x); ∀η∗(x) 6= 0 (9)

The above equation gives the integral eigenvalue problem. Here R(x,x′) = 〈u(x)u∗(x′)〉 is the averaged
auto correlation function. The solution to the integral eigenvalue problem given in equation (9), gives a
series of eigenvector or eigenfuctions which are called Proper Orthogonal Modes φi(x)

∞
i=1 (POM’s or POD

modes) and the corresponding eigenvalues λ∞i=1 are called Proper Orthogonal Values (POV’s). The energy
contained is defined as:

E =

∞∑
i=1

λi (10)
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and the energy captured by the ith POM is given by λi/E. The reduced order solution to u is obtained by
truncating the bases and considering only the first r modes which capture say around 99% of energy. From
the mathematical statement of optimality used for constructing the POD bases, it can be seen that on an
average, the reduced POD bases form the ‘best’ bases as the POD eigenvalues decay rapidly and capture
more amount of energy in the first r POD modes, than any other bases.

Finally the approximation of u denoted by uh is obtained by projecting u on to the reduced POD bases as
follows:

u(x) ≈ uh(x) =

r∑
i=1

φ(x)ai = Ua (11)

where U = [φ1, · · · , φr] are the reduced bases functions and a = {a1, · · · , ar} are unknown coefficients.

2.1 POD computation in the discrete case using eigenvalue analysis
In general the continuous governing equations are discretized in space when solving using finite difference,
finite element or meshfree methods. For example consider solving a linear elastodynamics problem using
the meshfree Reproducing Kernel Particle Method (RKPM), where u(x, t) is the field variable which is the
displacement at point x at time t. The Galerkin weak form in u is discretized in space using the meshfree
RK approximation to obtain the following matrix equation:

Md̈+Kd = F (12)

where,M is the mass matrix of size n× n where n is the number of degrees of freedom,K is the stiffness
matrix of size n× n, F is the force vector of size n and d is the vector of nodal coordinates of size n.

The method of snapshots is used to find the reduced order solution to the above equation [2, 4]. In the
off-line phase where the full model simulations are run, a set of ‘S’ snapshots of the nodal coordinate vector
d ∈ Rn, at different time intervals are collected in a matrix D, which is called the Response matrix and is
of size n× S.

D = [d1, · · · ,dS ] =

d11 · · · d1S

...
. . .

...
dn1 · · · dnS


n×S

(13)

In this chapter, when a subscript is used for matrices and vectors, this denotes their size. The discrete
averaged auto-correlation matrix R̂ is given by:

R̂ =
1

S
DDT =

1

S


∑S
j=1(d1j)

2 · · ·
∑S
j=1(d1j)(dnj)

...
. . .

...∑S
j=1(dnj)(d1j) · · ·

∑S
j=1(dnj)

2

 (14)

The eigenvalue problem in the discrete form is given by:

R̂U = UΛ (15)

where
U = [φ1, · · · ,φn] (16)

is the matrix containing the POD bases, and

Λ = diag(λ1, · · · , λn) (17)

is the matrix having the eigenvalues as the diagonal entries. This discrete eigenvalue problem is analogous to
the continuous version given in equation (9). The above discrete eigenvalue problem given in equation (15)
can be solved to obtained the POD bases. In equation (15), the discrete averaged auto-correlation matrix
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R̂, is a self-adjoint matrix. The Hilbert-Schmidt theorem states that: ‘The eigenvalues of a self-adjoint
matrix are real and the eigenvectors corresponding to distinct eigenvalues are orthogonal’. According to this
theorem the POD bases vectors are orthogonal.

It can be seen from (15) that a n × n eigenvalue problem needs to be solved to obtain the POD bases, but
as this part of the process can be carried out off-line, this computational expense need not be considered. In
general if n >> S and if it is required to reduce this off-line computational cost, the method of snapshots as
proposed by Sirovich et al. in [5] can be used. In this method the n× n eigenvalue problem is transformed
to a S×S eigenvalue problem as follows. Since the POD bases and the snapshots span the same space, each
eigenvector φ can be expressed as a linear combination of the snapshots.

φ = D(n×S) â(S×1) (18)

where âT = {â1, · · · , âS} are the unknown coefficients. Substituting this in the discrete eigenvalue problem
given in equation (15) gives:

R̂U = UΛ

⇒ 1

S
DDTφ = λφ; (n× n eigenvalue problem)

⇒ 1

S
DDTDâ = λDâ

⇒ 1

S
DTDâ = λâ; (S × S eigenvalue problem) (19)

In order for the above equation to be a necessary condition, the snapshots need to be linearly independent
[2]. Provided â is scaled to be orthonormal, that is, âT â = I:

φTφ = âTDTDâ = λS (20)

To get a set of orthonormal bases φ divide by:

φi =
1√
Sλi

Dâi; i = 1, · · · , S (21)

This results in φTφ = I . In this way the first ‘S’ POD modes can be obtained.

2.2 POD computation in the discrete case using Singular Value Decomposition (SVD)
Alternately the POD bases can be equivalently obtained by SVD of the response matrix as follows:

D(n×S) = U(n×n) Σ(n×S) V
T

(S×S) (22)

here U ∈ Rn×n and V ∈ RS×S are the orthogonal matrices containing the left singular vectors and right
singular vectors of D, respectively. The matrix U gives the POD bases. Σ ∈ Rn×S is a semi positive
definite psuedo-diagonal matrix and contains diagonal entries with singular values ofD, given by σi.

Σ(i, i) = σi; i = min(n, S) (23)

and σ1 > σ2 > · · · > σmin(n,S) ≥ 0.

2.3 Equivalence of EVD and SVD
The equivalence between EVD and SVD and the relationship between the eigenvalues and singular values
can be obtained from the following equations:

1

S
DDT =

1

S
UΣΣTUT = U diag(

σ2
1

S
, · · · , σ

2
n

S
) UT (24)

1

S
DTD =

1

S
V ΣTΣV T = V diag(

σ2
1

S
, · · · , σ

2
S

S
) V T (25)
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From the above equations, the relationship between the eigenvalues and singular values is given by:

λi =
σ2
i

S
(26)

3 Galerkin and Petrov-Galerkin projections
Consider the general case of the matrix equation for a linear elastodynamics problem as given in equation
(12). The reduced order approximation for d denoted by dh is given by the expression:

dh(n×1) = Ū(n×r) d
r
(r×1) (27)

where r is the order of reduction with r << n, Ū = [φ1, · · · , φr] is the projection matrix containing the
reduced set of POD bases and dr are the reduced nodal coordinates. Substituting equation (27) in the system
of equations (12) gives:

MŪd̈r +KŪdr − F = e (28)

where ‘e’ is the residual error as the approximation of d is substituted in the matrix equations (12). In order
to minimize this error, the residual error is constrained to be orthogonal to a subspace W, defined by the
basesW ∈ Rn×r, which gives:

W Te = 0

W TMŪd̈r +W TKŪdr −W TF = 0 (29)

For the case of Galerkin projection,W = Ū and in the case of a Petrov-Galerkin projection,W 6= Ū .

Finally the reduced system of equations are given by:

M̂d̈r + K̂dr = F̂ (30)

where

M̂(r×r) = W T
(r×n) M(n×n) Ū(n×r) (31a)

K̂(r×r) = W T
(r×n) K(n×n) Ū(n×r) (31b)

F̂(r×1) = W T
(r×n) F(n×1) (31c)

The matrices M̂(r×r) and K̂(r×r) are usually fully populated. POD transforms large sparse matrices to
small dense systems. Equation (30) gives the reduced system with r degrees of freedom and can be solved
for dr. The reduced solution dh can be obtained from equation (27). It can be seen that when r << n,
the computational cost for solving the system is greatly reduced. For discrete systems, the number of POD
modes to be considered for the reduced system can be chosen such that the energy given by:

E =

∑r
i=1 λi∑n
i=1 λi

(32)

is greater close to 1. The critical part in model order reduction using POD is choosing the correct snapshots
which capture the response of the full model which is essential to give results close to the full scale model.

4 Model order reduction using least squares Galerkin projection for
RKCM

In meshfree RKCM [3], the formulation results in solving an over-determined system of equations. This
over-determined system of equations cannot be projected using a standard Galerkin projection, as this pro-
jection is not compatible. To overcome this, the Least Squares Galerkin (LSG) projection is proposed to
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be used in conjunction with RKCM to form the reduced set of equations in the RKCM framework. Using
the LSG projection the bases W is chosen to be K(n×n) Ū(n×r). This method is detailed in the following
section with linear problems as examples and error estimates are given to demonstrate the effectiveness of
the method.

4.1 Linear problems - Elastodynamics
Consider the following general linear elastodynamics problem for RKCM.

αü(x, t) +Lu(x, t) = f(x, t); x ∈ Ω, t ∈ (0, T ] (33)

with boundary conditions,

Bhu(x, t) = h(x, t); x ∈ ∂Ωh, t ∈ (0, T ] (34a)
Bgu(x, t) = ū(x, t); x ∈ ∂Ωg, t ∈ (0, T ] (34b)

and initial conditions

u(x, 0) = u0(x); x ∈ Ω̄ (35a)

u̇(x, 0) = v0(x); x ∈ Ω̄ (35b)

whereL,Bh andBg are the spacial differential operators in the domain, on the natural and essential bound-
ary, respectively. u is the displacement vector, f , h and ū are the body force, applied boundary traction
vector and prescribed displacement vector, respectively. α is the density. u0 is the initial displacement
vector, v0 is the initial velocity vector and Ω̄ = Ω ∪ ∂Ωh ∪ ∂Ωg represents the entire problem domain.

The temporal discretization is carried out using the central difference scheme as follows:

α(un+1(x)− 2un(x) + un−1(x)) + ∆t2Lun(x) = ∆t2 f(x, tn)︸ ︷︷ ︸
fn(x)

; x ∈ Ω (36a)

Bhun+1(x) = h(x, tn+1)︸ ︷︷ ︸
hn+1(x)

; x ∈ ∂Ωh (36b)

Bgun+1(x) = ū(x, tn+1)︸ ︷︷ ︸
ūn+1(x)

; x ∈ ∂Ωg (36c)

u0(x) = u0(x); x ∈ Ω̄ (36d)

u1(x)− u0(x) = ∆tv0(x); x ∈ Ω̄ (36e)

Here n is the time step counter and un(x) = u(x, tn). For the spatial discretization, un(x) is discretized
using the Reproducing Kernel (RK) shape function as follows:

un(x) ≈ uhn(x) = ΨT (x)an (37)

where ΨT = [Ψ1,Ψ2, · · · ,ΨNS
] with ΨI = ΨIId̂×d̂ and

aTn =
{

(aT1 )n, (a
T
2 )n, · · · , (aTNS

)n
}

with (aTI )n =
{

(a1I)n, (a2I)n, · · · , (ad̂I)n
}

. Here ΨI represents the
RK shape function at node ‘I’. The discretization points for constructing the approximation of un are the
source points NS . Id̂×d̂ is the identity matrix of size d̂ × d̂ where un ∈ Rd̂. Consider a set of collocation
points in the entire domain including the boundaries, withNP points in the interior of domain, NQ points on
the natural boundary and NR points on the essential boundary. The approximation of un given in equation
(37) is substituted in the strong form of the governing equations (36) and the residual is enforced to be zero
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at the collocation points which leads to an over-determined system of equations given by:

Man+1 = 2Man −Man−1 −∆t2A1an + ∆t2Fn︸ ︷︷ ︸
b1
n,n−1

(38a)

A2an+1 = b2
n+1 (38b)

A3an+1 = b3
n+1 (38c)

where

M =

 αΨ(p1)
...

αΨ(pNP
)

 ; A1 =

 LΨ(p1)
...

LΨ(pNP
)

 ; Fn(t) =

 f(p1, tn)
...

f(pNP
, tn)

 (39a)

A2 =

 B
hΨ(q1)

...
BhΨ(qNQ

)

 ; b2
n+1 =

 h(q1, tn+1)
...

h(qNQ
, tn+1)

 (39b)

A3 =

 B
gΨ(r1)

...
BgΨ(rNR

)

 ; b3
n+1 =

 g(r1, tn+1)
...

g(rNR
, tn+1)

 (39c)

Re-writing equations (38) with added weights on the essential and natural boundaries: M√
βhA2
√
βgA3


︸ ︷︷ ︸

A

an+1 =

 b1
n,n−1√
βhb2

n+1√
βgb3

n+1


︸ ︷︷ ︸

b

(40)

here,
√
βh and

√
βg are the weights to be applied on the natural and essential boundaries, respectively, to

balance the error between the domain and the boundary terms. They are given by [1]:√
βh = O(κ−1N−2

S σ) (41a)√
βg = O(N−1

S σ) (41b)

where κ is the material constant and σ = max(α,∆t2, N2
S). The initial conditions are given by:

Ha0 = ū0 (42a)
H(a1 − a0) = ∆tv̄0 ⇒Ha1 = ∆tv̄ +Ha0 (42b)

where the matrices are given by:

H =

 ΨT (χ1)
...

ΨT (χNC
)

 ; ū0 =

 u0(χ1)
...

u0(χNC
)

 ; v̄0 =

 v0(χ1)
...

v0(χNC
)

 (43)

where χ = [χ1, · · · ,χNC
] =

[
p1, · · · ,pNP

, q1, · · · , qNQ
, r1, · · · , rNR

]
are the collocation points and

NC = NP + NQ + NR. The over-determined system of equations (40) can be solved using the method of
least squares.

4.1.1 Model order reduction using Least Squares Galerkin projection:

The over-determined system of equations Aan+1 = b are reduced as follows. Consider a one-dimensional
case where the over-determined system matrices have the following size:

A(NC×NS) (an+1)(NS ,1) = (b)(NC ,1) (44)
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The reduced approximation of a is given by:

a ≈ ah(NS×1) = Ū(NS×r)a
r
(r×1) (45)

where Ū = [φ1, · · · , φr] is the reduced bases obtained by truncating POD modes of the response matrix and
r is the number of reduced modes or the reduced degrees of freedom for solving the reduced system. ar are
the unknown coefficients in the reduced system. Substituting the reduced approximation (45) in (44) results
in the equation:

A(NC×NS) Ū(NS×r)a
r
(r×1) − (b)(NC ,1) = e (46)

where e is the residual error. To minimize this error, the residual error is constrained to be orthogonal to a
subspace W, defined by the basesW ∈ RNC×r, which gives:

W Te = 0

⇒W T
(r×NC)A(NC×NS) Ū(NS×r)a

r
(r×1) = W T

(r×NC)(b)(NC ,1) (47)

It can be seen that the bases W should belong to RNC×r for projecting the RKCM equations. A projection
usingW = Ū is not possible since in this caseW ∈ RNS×r. Hence a Least Squares Galerkin projection is
used with:

W = A(NC×NS) Ū(NS×r) (48)

This results in the reduced equation:

(A(NC×NS) Ū(NS×r))
TA(NC×NS) Ū(NS×r)a

r
(r×1) = (A(NC×NS) Ū(NS×r))

T (b)(NC ,1) (49)

which is re-written as:

ŪT
(r×NS)A

T
(NS×NC)A(NC×NS) Ū(NS×r)a

r
(r×1) = ŪT

(r×NS)A
T
(NS×NC)(b)(NC ,1) (50)

As the above system of equations (50) has a symmetric matrix ŪTATA Ū on the left hand side, Cholesky
decomposition can be used to solve these reduced determined system of equations.

4.1.2 Error analysis for linear dynamic problems

The error between the full and reduced solution is determined using the following error estimate:

e1 =

n∑
ts=1

(
|||ufull − ured|||
|||ufull|||

)
(51)

where ts denotes the time step counter and n is the total number of time steps, ufull is the full scale solution
evaluated at a set of N̂ points in the problem domain and obtained off-line, ured is the reduced order solution
evaluated at the same set of N̂ points. The norm ||| • ||| is defined as follows:

|||x||| =

√∑N̂
i=1(xi)2√
N̂

(52)

where N̂ is the length of the vector x.

4.1.3 Numerical examples

Example 1: 1D Wave equation

Consider a 1D string clamped at both ends. The governing equation of motion is given by:

αü = Eu,xx; x ∈ [0, L], t ∈ [0, T ] (53)
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with boundary conditions:

u(0, t) = 0 (54a)
u(L, t) = 0 (54b)

and with initial conditions:

u(x, 0) = 0 (55a)
u̇(x, 0) = ωsin(kx) (55b)

The following values for the parameters are used: density α = 1, length L = 16, Young’s modulus E = 1,
wavenumber k = 5π/L and the total time T = 6. The angular frequency is given by ω = kc, where
c =

√
(E/α). A time step of ∆t = 0.2 is used. For RKCM the domain is discretized using NS = 51 and

NC = 2NS − 1 collocation points. A support size of 3h is used in the RK approximation function where
h is the nodal spacing of the source points. A total of 31 snapshots are collected. The decay of the first 31
POV’s is shown in figure 1. As the eigenvalues decay very rapidly after the first eigenvalue, for the reduced
order solution the number of POD modes is chosen to be r = 1 which is 1.96% of degrees of freedom (DOF)
of the full model. Figure 2 shows the comparison of the full solution for u and the reduced solution for u
at the mid point of the domain at each time step. Figure 3 shows the comparison of the full solution and
the reduced solution at all the points in the domain at the final time T = 6. It can be seen that the reduced
solution is very close to the full order solution. Table 1 gives the error e1 for different values of r. It can be
seen that the error reduces as the number of modes r are increased, as expected.
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Figure 1: Decay of Proper Orthogonal Values for the 1D wave equation problem
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Figure 2: Comparison of the solution at the mid point of the domain, plotted for t ∈ [0, T ] for 1D wave
equation problem
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Figure 3: Comparison of the solution at the final time T = 6 plotted over the domain, for 1D wave equation
problem

Table 1: Error e1 for 1D wave equation problem

r
% DOF of full

model e1

1 1.96% 3.202E-003
5 9.8% 4.791E-004

25 49.02% 5.597E-009

Example 2: 1D Bar with heterogeneous material

Consider a 1D heterogeneous bar clamped at both ends as shown figure 4.

Figure 4: 1D bimaterial bar with clamped ends

The governing equation of motion is given by:

αü = (E(x)u,x),x; x ∈ [0, L], t ∈ [0, T ] (56)

with boundary conditions:

u(0, t) = 0 (57a)
u(L, t) = 0 (57b)

and with initial conditions:

u(x, 0) = 0 (58a)
u̇(x, 0) = sin(kx) (58b)

A smooth transition of material properties at the interface is considered where the
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Young’s modulus is interpolated using the RK approximation functions with linear bases and a support size
of 4h. The interpolated E values and E,x values plotted over the domain are shown in figure 5.
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(a) Interpolation of E
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Figure 5: Interpolation of E and E,x in the domain using RK approximation function

The following values for the parameters are used: density α = 1, length L = 16, wavenumber k = 2π/L
and the total time T = 6. A time step of ∆t = 0.2 is used. For RKCM the domain is discretized using
NS = 51 and NC = 2NS − 1 collocation points. A support size of 3h is used in the RK approximation
function where h is the nodal spacing of the source points. A total of 31 snapshots are collected. The decay
of the first 31 POV’s is shown in figure 6. Considering the eigenvalues decay, for the reduced order solution
the number of POD modes is chosen to be r = 5 which is 9.8% of degrees of freedom (DOF) of the full
model. Figure 7 shows the comparison of the full solution for u and the reduced solution for u at the mid
point of the domain at each time step. Figure 8 shows the comparison of the full solution and the reduced
solution at all the points in the domain at the final time T = 6. It can be seen that the reduced solution is
very close to the full order solution. Table 2 gives the error e1 for different values of r. It can be seen that
the error reduces as the number of modes r are increased, as expected.
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Figure 6: Decay of Proper Orthogonal Values for the 1D heterogeneous bar problem
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Figure 7: Comparison of the solution at the mid point of the domain, plotted for t ∈ [0, T ] for 1D heteroge-
neous bar problem
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Figure 8: Comparison of the solution at the final time T = 6 plotted over the domain, for 1D heterogeneous
bar problem

Table 2: Error e1 for 1D heterogeneous bar problem

r
% DOF of full

model e1

1 1.96% 5.776E+000
5 9.8% 3.547E-002

25 49.02% 3.018E-007
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