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1 Level set function

One of the first and the most influential work on using Level set methods was introduced by Osher and
Sethian [4] which gives numerical solutions to solving problems associated with fronts moving with a cur-
vature dependent speed, using level set functions for curve evolution. The level set function is an implicit,
sign-distance function in n'™ dimension and its zeroth isocontour represents the moving interface, which is
one dimension lower than the level set function dimension. Consider a closed moving interface I'(¢) in the
domain € and let ¢(xz, t) be a continuous function defined as:

¢(x,t) >0 if xisinside I'(¢) (la)
¢(x,t) =0 ifxisonI'(t) (1b)
d(x,t) <0 if xis outside I'(t) (Ic)

@(x, t) is said to be the level set function of the interface I'(¢). The motion of this interface is governed by
the evolution of the level set function. Some of the important parameters associated with the interface I'(¢)
can be defined in terms of the level set function as follows:

Unit outward normal:

vo(z,t)
- 2
" ot 1) ?
Curvature of I'(¢):
_ Vo(x,t)
w7 (o) (3)
Area inside T'(¢):
A = | H(o(z,t))dx 4
Q
Area outside T'(¢):
Aput = /[1 — H(¢(z,t))]dz ®)
Q
Length of T'(¢):
L= [ 8(6(@,1)[vo(@. 0] do ©
Q

where H (o) and 0(e) represent the Heaviside function and Dirac delta function defined as follows:

1 forz >0
H(z) = - 7
(2) {O forz <0 ™

0(z) = (®)
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Figure 1: Signed distance level set function. Black contour represents the zero™ isocontour of the level set

function

For numerical purposes the regularized version of H (e) and §(e) are used in practice. For practical applica-
tions the level set function is chosen to be a signed distance function, which is an implicit smooth function
and is defined below [3]:

¢(x) = min(|le —xr|) forallx; €T 9)

The sign distance function also obeys the property of |V¢(x)| = 1. Example of a signed distance function
is shown in figure 1, where the black contour indicates the zero™ level set curve. During numerical time
evolution the level set function tends to deviate from a signed distance function which may cause numerical
instability. To avoid this, the level set function is re-initialized periodically to make it a signed distance
function. Additional re-initialization equation given in (10) should be solved which makes the procedure
computationally expensive. In the present work re-initialization has not been required to be done in any of
the examples given.

Z—If = sign(p(x, 7)) (1 — |VY|)
Y(x,0) = ¢(x,7) (o

In the past two decades level set based methods have been very successfully applied in the field of image
segmentation, where the level set function is used for boundary or interface identification. The main ad-
vantage of using the level set surfaces in image segmentation is their ability to easily identify topological
changes in images, that is, splitting and merging of regions.

2 Active contours without edges (ACWE)

The ACWE method was proposed by Chan and Vese [2] and is derived from the piecewise constant Mumford-
Shah functional in a level set framework for image segmentation. The following paragraph illustrates this
method in the context of segmenting an image which has two distinct intensities - 2 phase segmentation.

Consider an evolving curve I'(t) in the domain €. Let the image be formed by two regions, inside region
R surrounded by the outside region R°“ as shown in figure 2(a). The two regions have approximately
piece-wise constant intensities given by u’" in R and u2"! in R°“!, respectively. The aim is to obtain the
final boundary I'(¢) such that u,(z) € R™ ~ v’ and u,(x) € R°“! ~ u2“t as shown in figure 2(b), where
u,(x) is the pixel intensity at point x. To achieve this, following ‘fitting” functional is minimized:
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(a) Initial O™ isocontour of level set function (b) Final contour obtained after segmentation

Figure 2: Two phase (region) segmentation using ACWE method

I(¢y, co,T) = plength(T) + v Area inside(T)
+ M / (uo(x) — ¢1)?dx + /\2/ (uo(x) — cz)*de an
inside T outside I"

where 1, v, A1, A2 are non-negative parameters which indicate weights for their respective terms in the above
functional. Introducing the level set formulation into the above functional, equation (11) can be re-written
as:

I(cy, co, @ /6 N|Vo(x \dw+y/ H(¢(x))dx
oY / (o(w) — 1) H (9()) o
Y / (o) — €2)2([1 — H(6(x))]da (12)

The expressions for the unknowns c; and co can be obtained by minimizing (12) with respect to c¢; and co,
respectively, keeping all other variables constant:

Jo to(w) H(¢())dz

& = f <¢<m>>dw 4
. fQu — H(¢(x))]dz
2= O e (14)

It can be seen from equations (13) and (14) that ¢; represents the average of u,(x) inside I'(¢) and co the
represents the average of u,(x) outside I'(t). Minimizing the functional (12) with respect to ¢ keeping ¢y
and cy constant, the Euler-Lagrange equations are deduced. In this process, the minimization is parameter-
ized by artificial time ¢ > 0, which gives the evolution of the level set function and associated boundary
conditions as follows:

9% _ 50) {W . (W)) — v = M (up(®) — 1) + Aa(up(@) — 2)?|  inQ

ot V|
%2)' Vép-n=0 ond)
¢(x,0) = ¢°(z) (given) (15)



Here € represents the interior domain of the image and OS2 represents the boundary of the image. As
mentioned in the previous section the regularized versions of H(e) and d(e) as given below are used for
numerical implementation.

H.(z) = % [1 + %arcmn (z)] (16)
1
)= 1 o) 4

where ¢ is a positive parameter. ¢ is taken to be equal to 0.5 in all the examples provided in further chapters
unless specified. The boundary condition in equation (15) which corresponds to the image boundary does
not play a significant role in finding the segmented regions which are in the interior of the image. In all
examples in this work a constant term is used for updating ¢ near the boundaries. Equation (15) is solved
numerically using a semi-implicit scheme, which is detailed in Appendix A.

2.1 Example: Two phase ACWE segmentation

This example illustrates the two phase image segmentation using one level set function for the gray scale
image shown in figure 2. The values of parameters used are ;1 = 100, Ay = 1, Ao = 1, v = 0 and At = 1.
The final contour obtained which segments the 2 regions, is shown in figure 2(b).

3 Extension of ACWE model for multiphase and multichannel seg-
mentation

3.1 Multiphase level set method

The multiphase level set method [5] is an extension to the 2 phase ACWE formulation described in the
previous section. It is a generalized multiphase level set framework to segment images having multiple
connected regions (or phases). In this method multiple level set curves are used to segment multiple regions
and also triple junctions, without creating any overlap or vacuum in the segmented image. k level set curves
can segment up to 2 regions in the image. The union of all the zero isocontours of the level set functions
represents the final boundaries of segmentation.

3.2 Vector valued image segmentation

The ACWE model has been extended to the segmentation of multichannel images in [1]. A multi-channeled
image can be split into multiple channels, which have to be input together for segmentation. Each pixel has
a vector as input in a multichannel image. For example a RGB image consists of 3 channels for red, green,
blue respectively. Each channel will be a grayscale image. Similarly a CMYK image can be split into 4
channels for cyan, magenta, yellow and black, respectively.

3.3 Multiphase multichannel segmentation

The multiphase segmentation can be applied to multichannel images by combining the multiphase and mul-
tichannel segmentation methods. A general framework of the functional for an image with N channels,
using n level set curves is given by:

(c,’s, ¢1’s) = Zuk/ 5(Px)|V P |dz
h—1 Q

on
+
p

N

(/Q %Z ()\;(uf)(w) — 02)2) dw) (18)

i=1



where u! (x) denotes the pixel intensity in the i channel at point & and cj, denotes the unknown con-
stant which represents the mean value of intensity in the region €2, of channel 7. The corresponding Euler
Lagrange equations and expressions for ¢;, can be obtained by minimizing the above functional (18).

Appendix A Finite difference scheme for ACWE method

Equation (15) for the ACWE method, is solved numerically using a semi-implicit scheme as given below:

¢Z;r1 B ?J —5 (¢n‘)ﬁ ¢zn+1,j B ¢Z;r1 _ ¢Z‘Lj1 - ?71,3‘
At ENTLI) p2 A B

n n+1 n+1 n
(e Prjr1 — g\ [P — P
i) g2 C D

+0-(075) [=v = M (uoij — c1(Pn))” + Aol j — c2(n))?] (19)

where
A ¢ (W) N (U) 00
co \/( ?+1,j2h¢?—1,j)2+ <¢§fj+1h Qf’ﬁj)Q (20¢)

G\ 2 no_gn N\ 2
D= ( z+1,]—12h z—l,j—1> + <mhm_1) (ZOd)

h is the spacing between the pixels in the image, which is the same in both = and y directions and At is the
time step increment.
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